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Abstract

The fullwave Green’s function and Method of

Moments approach is recognized as the most gen-

eral and accurate solution method to the problem

of high frequency modeling of MMIC passive circuit

components. However, the computer codes derived

on the basis of that method are usually compu-

tationally intensive. Several numerical techniques
that significantly improve both the accuracy and

efficiency of the method are presented. The numer-

ical procedures do not reduce the generality of the

method. The numerical technique is described as it

haa been applied to the problem of the enclosed or

boxed microstrip structure. Results for the closed

structure open-end and step discontinuities are pre-

sented.

1 INTRODUCTION

The successful design of high frequency MMIC circuits

requires highly accurate models of the individual passive

components. Moreover, to be practical, the solutione must

be numerically effcient. The Green’s function and Method

of Moments approach is very general. Becauee the fullwave

Green’s function is used, the eolution includes all the sig-

nificant high frequency phenomena, such as dispersion and

the waveguide mode effects. (The space waves and surface

waves of the open structure are related to the waveguide

modes of the closed structure.) As indicated, the Green’s

function Moment Method is very general; however, the ap-

plication of the method is restricted by practical consid-

erations related to the numerically intensive nature of the

solutions. To addrese this problem, several simple but pow-

erful numerical techniques have been developed that can be

incorporated in the general Green’e function. These tech-

niques result in greatly improved numerical efficiency and

accuracy. They have been applied to the closed structure,

which consists of the circuit element in rectangular waveg-

uide.

Although the method, in theory, can address a complete

circuit, thk is not practical or efficient. One would quickly

exhaust available computer resources. Rather the general

circuit problem can be addressed as an interconnection of

interacting discontinuity elements. The individual element

models, in the form of Z, Y, or S matrices, can be made

general enough to include all the significant high frequency

phenomena. It is assumed that the terminal planes of the

individual circuit component (discontinuity) are at a suffi-

cient distance from any significant junction features so that

all the higher order fields caused by the discontinuity have

decayed. In all that follows the assumption is that the ter-

minal planes are sufficiently removed from the junction(s),

such that the connection to the balance of the circuit can

be properly described in terms of a dominant guided mode.

For high frequency applications, each component module

can be characterized as a frequency dependent module.

The junction scattering parameters can be extracted by

various ways. One approach uses a sub domain basis and a

delta-gap excitation [1], which required the interpretation

of a standing wave pattern in order to extract the dominant

behavior. This process generally introduces non-negligible

errors. The adopted method uses a combination of entire

domain and subdomain bases 12]. Away from the junction

region the current is the sum of two modified traveling

waves, the incident and scattered traveling waves. The

advantage of this method is that the scattering parameters

are found directly from the moment method solution.

z GREEN’S FUNCTION

The geometry of interest is shown in Figure 1. It con-

sists of a three layer structure with uniaxial permittivities.

Each layer is characterized by .?i with layer thickness of

~i where i = 1,2,3. Side walls are eet at z = b where

the wall conditions can be mathematically chosen .s elec-

tric or magnetic walls. When the material is uniaxial, the

complete field configuration can be reproduced by a combl-

nation of TEV and TMV Fourier modes eince the Helmholtz

equation is analytically separable. The formulation of the

problem can be carried out separately for the TEV and

TAKP Fourier modes. The superposition of these Fourier

modes can then be used to reproduce the actual fields or
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currentsof the system. The axialdirection,alsothe cur-

rentdirectionforthe microstripcase,islabeledas the y

directionand the geometry isconsideredto be open for

thisdirection.Mathematicallythe Fouriermodes can be

describedaa discreteinthe z directionand continuousin

the z direction.The generalsummation and integralform

[3]fora fieldterm is:

@(z,y,z) = ~ /+@ C!(k,n, y, kz).ii(k.n,kz)e~kzzsc(kznz) dk=,
~=~–03

(1)

where .SC(kZnZ)is defined as the sine or cosine Fourier
transform. ~and@are defined aseither current or electric
field vectors. The dyadic Green’s function is represented
by ~(kz., y,k=) in the Fourier transform domain.
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i~igure 1: Geometry of Enclosed Guiding Structurl!

s FOURIER SUMMATION

The problem is first formulated for the 2-Dimensional

cases, where the current/field depends only on the cross

section of the geometry.

co >,
.Zm,m(y,kz) = ~om, (k=n, kz). n(kzn, y,kz). im(kzn, k=)

n=o
(2)

The closed form expression is found by obtaining the asymp-

totic expression of the dyadic Green’s function. The type

of closed form is determined by the current/field expres-

sion and dyadic Green’s function form. The efficiency and

the accuracy of the computation is improved drastically by

employing closed form expressions. The above expression

is also used to find the eigenfunctions and eigenvalues of

the system.

When the expression above is evaluated for a given in-

tegrat ion variable k=, the infinite sum exhibits pole-like

behavior on the real and imaginary axes (shown in Fig-

ure 2). These pole-like behaviors are due to the waveguide

modes. If the integration path is deformed and chosen in
the complex plane, the overall function behavior becomes

smooth. This smooth behavior allows us to employ an in-
terpolation technique without degrading the accuracy of

the evaluation of the infinite sum.
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Figure 2: Behavior of Infinite Summation versus Complex

Integration Variable k=

A NUMERICAL RESULTS

When the microstrip devices are constructed, it is al-
most always necessary to have covers in order to protect
the devices from the environment and from electromag-
netic interference. The protection can include side walls
and a top cover. It is necessary to understand the reso-
nance nature of the enclosure since the characterization of
the discontinuities may also strongly depend on the enclo-
sure. A cross section of the enclosure and substrate then
appears as a rectangular waveguide cross section with ma-
terial layers. This structure will support waveguide modes,
both propagating and evanescent. Strong coupling is pos-
sible between these modes and the circuit element. When
this strong coupling occurs, the behavior of the current dis-
tribution on the strip conductors may not be as predicted
by the open structure analysis.

4.1 Open-end Microstrip Line

The open-end is the simplest microstrip discontinuity.
It is also fundamental in that with the adopted solution
method it involves all the significant phenomena associ-
ated with the more complex components, in particular,
:1,,. phenomena of coupling with the waveguide modes of
4‘.. boxed structure at hi~h fr~n?l~ncies. The excess length

computation for the open-end microstrip in an enclosure is
shown in Figure 3.

4.2 Step Discontinuity of the Microstrip

Line

The foregoing analysis and the numerical results indicate
that the transverse current is negligible. This is because of
the fact that there is no mechanism to excite strong trans-
verse currents for the open-end and symmetric gap dis-



continuities (when the side walls are placed sufficiently far

away from the strip element.) However, the step disconti-

nuity problem, because of its current flow in the vicinity of

junction, requires the transverse current distribution. The

current dktribution in the vicinity of the step discontinuity

is plotted in Figure 4. The frequency dependent scattering

parameters are also plotted in Figure 5 where WP/VJ. ratio

isl:5.
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Figure 3: Frequency Dependent Excess Length. C,l = 10.0,

(,? == 6,3 = 1.0, w = 1.0, S1 = 1.0, S2 = S3 = 10.0, and

b = 21,0.
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Figure 4: Current Distribution in the vicinity of step dk-

continuities. ~rl = 10.0, ~rz = 6r3 = 1.0, u+ = 5.0, ws = 1.0

.SI = I.0, S2 = SS = 10.0, and b = 21.0. Strips are centered

in the enclosure configuration.
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Figure 5: Frequency Dependent Characteristics of the Step

Discontinuity. IErl = 10.O, Erz = E,3 = 1.0, WP : w. = 5:1,

S1 = 1.0, 52 = S3 = 10.0, and b = 21.0.



s CONCLUSION

An very efficient technique for the evaluation of the sums

and integrals that arise in the Green’s-Funct ion-Moment-

Method solution to the problems of MMIC passive compo-

nents has been described. The methods make it practical

to dpply the Green’s function method to more complex

components.
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