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Abstract

The fullwave Green’s function and Method of
Moments approach is recognized as the most gen-
eral and accurate solution method to the problem
of high frequency modeling of MMIC passive circuit
components. However, the computer codes derived
on the basis of that method are usually compu-
tationally intensive. Several numerical techniques
that significantly improve both the accuracy and
efficiency of the method are presented. The numer-
ical procedures do not reduce the generality of the
method. The numerical technique is described as it
has been applied to the problem of the enclosed or
boxed microstrip structure. Results for the closed
structure open-end and step discontinuities are pre-
sented.

1 INTRODUCTION

The successful design of high frequency MMIC circuits
requires highly accurate models of the individual passive
components. Moreover, to be practical, the solutions must
be numerically effcient. The Green’s function and Method
of Moments approach is very general. Because the fullwave
Green’s function is used, the solution includes all the sig-
nificant high frequency phenomena, such as dispersion and
the waveguide mode effects. (The space waves and surface
waves of the open structure are related to the waveguide
modes of the closed structure.) As indicated, the Green’s
function Moment Method is very general; however, the ap-
plication of the method is restricted by practical consid-
erations related to the numerically intensive nature of the
solutions. To address this problem, several simple but pow-
erful numerical techniques have been developed that can be
incorporated in the general Green’s function. These tech-
niques result in greatly improved numerical efficiency and
accuracy. They have been applied to the closed structure,
which consists of the circuit element in rectangular waveg-
uide.

Although the method, in theory, can address a complete
circuit, this is not practical or efficient. One would quickly
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exhaust available computer resources. Rather the general
circuit problem can be addressed as an interconnection of
interacting discontinuity elements. The individual element
models, in the form of Z, Y, or S matrices, can be made
general enough to include all the significant high frequency
phenomena. It is assumed that the terminal planes of the
individual circuit component (discontinuity) are at a suffi-
cient distance from any significant junction features so that
all the higher order fields caused by the discontinuity have
decayed. In all that follows the assumption is that the ter-
minal planes are sufficiently removed from the junction(s),
such that the connection to the balance of the circuit can
be properly described in terms of a dominant guided mode.
For high frequency applications, each component module
can be characterized as a frequency dependent module.

The junction scattering parameters can be extracted by
various ways. One approach uses a subdomain basis and a
delta-gap excitation [1], which required the interpretation
of a standing wave pattern in order to extract the dominant
behavior. This process generally introduces non-negligible
errors. The adopted method uses a combination of entire
domain and subdomain bases [2]. Away from the junction
region the current is the sum of two modified traveling
waves, the incident and scattered traveling waves. The
advantage of this method is that the scattering parameters
are found directly from the moment method solution.

2 GREEN'’Ss FUNCTION

The geometry of interest is shown in Figure 1. It con-
sists of a three layer structure with uniaxial permittivities.
Each layer is characterized by & with layer thickness of
s; where 1 = 1,2,3. Side walls are set at z = +a where
the wall conditions can be mathematically chosen as elec-
tric or magnetic walls. When the material is uniaxial, the
complete field configuration can be reproduced by a combi-
nation of TE, and TM, Fourier modes since the Helmholtz
equation is analytically separable. The formulation of the
problem can be carried out separately for the TE, and
TM, Fourier modes. The superposition of these Fourier
modes can then be used to reproduce the actual fields or

1989 IEEE MTT-S Digest



currents of the system. The axial direction, also the cur-
rent direction for the microstrip case, is labeled as the y
direction and the geometry is considered to be open for
this direction. Mathematically the Fourier modes can be
described as discrete in the z direction and continuous in
the z direction. The general summation and integral form
[3] for a field term is:

z,y,2 Z/

n=0
(1)
where sc(kgnz) is defined as the sine or cosine Fourier
transform. ® and U are defined as either current or electric
field vectors. The dyadic Green’s function is represented
by Q(k,n,y, k) in the Fourier transform domain.

rigure 1: Geometry of Enclosed Guiding Structure:

3 FOURIER SUMMATION

The problem is first formulated for the 2-Dimensional
cases, where the current/field depends only on the cross
section of the geometry.

g (k:makz) ° n(kzmys kz) : sm.

MS

zm'm(ya kz) (k:m’ kz)

(2)
The closed form expression is found by obtaining the asymp-
totic expression of the dyadic Green’s function. The type
of closed form is determined by the current/field expres-
sion and dyadic Green'’s function form. The efficiency and
the accuracy of the computation is improved drastically by
employing closed form expressions. The above expression
is also used to find the eigenfunctions and eigenvalues of
the system.

n=0

]

When the expression above is evaluated for a given in-
tegration variable k., the infinite sum exhibits pole-like
behavior on the real and imaginary axes (shown in Fig-
ure 2). These pole-like behaviors are due to the waveguide
modes. If the integration path is deformed and chosen in
the complex plane, the overall function behavior becomes
smooth. This smooth behavior allows us to employ an in-
terpolation technique without degrading the accuracy of
the evaluation of the infinite sum.
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Figure 2: Behavior of Infinite Summation versus Complex
Integration Variable k,

4 NUMERICAL RESULTS

When the microstrip devices are constructed, it is al-
most always necessary to have covers in order to protect
the devices from the environment and from electromag-
netic interference. The protection can include side walls
and a top cover. It is necessary to understand the reso-
nance nature of the enclosure since the characterization of
the discontinuities may also strongly depend on the enclo-
sure. A cross section of the enclosure and substrate then
appears as a rectangular waveguide cross section with ma-
terial layers. This structure will support waveguide modes,
both propagating and evanescent. Strong coupling is pos-
sible between these modes and the circuit element. When
this strong coupling occurs, the behavior of the current dis-
tribution on the strip conductors may not be as predicted
by the open structure analysis.

4.1 Open-end Microstrip Line

The open-end is the simplest ‘microstrip discontinuity.
It is also fundamental in that with the adopted solution
method it involves all the significant phenomena associ-
ated with the more complex components, in particular,
i1.. phenomena of coupling with the waveguide modes of
+*._ boxed structure at high freanencies. The excess length
computation for the open-end microstrip in an enclosure is
shown in Figure 3.

4.2 Step Discontinuity of the Microstrip
Line

The foregoing analysis and the numerical results indicate

that the transverse current is negligible. This is because of

the fact that there is no mechanism to excite strong trans-
verse currents for the open-end and symmetric gap- dis-



continuities (when the side walls are placed sufficiently far
away from the strip element.) However, the step disconti-
nuity problem, because of its current fiow in the vicinity of
junction, requires the transverse current distribution. The
current distribution in the vicinity of the step discontinuity
is plotted in Figure 4. The frequency dependent scattering
parameters are also plotted in Figure 5 where w,/w, ratio
is1:5.
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Figure 3: Frequency Dependent Excess Length. ¢,; = 10.0,

€2 = €3 = 1.0, w = 1.0, 5; = 1.0, 83 = s3 = 10.0, and
b= 21.0.
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Figure 4: Current Distribution in the vicinity of step dis-
continuities. ¢; = 10.0, €3 = €,3 = 1.0, wp, = 5.0, w, = 1.0
sy = 1.0, s3 = s3 = 10.0, and b = 21.0. Strips are centered
in the enclosure configuration.
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Figure 5: Frequency Dependent Characteristics of the Step
Discontinuity. €, = 10.0, ¢,3 = ¢,3 = 1.0, w, :w, =5:1,
s1 = 1.0, 83 = s3 = 10.0, and b = 21.0.
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CONCLUSION

An very efficient technique for the evaluation of the sums

and integrals that arise in the Green’s-Function-Moment-
Method solution to the problems of MMIC passive compo-
nents has been described. The methods make it practical
to apply the Green’s function method to more complex
components.
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